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Abstract--The construction of a fractal capillary network is briefly recalled. The nonlinear transfer 
function of the basic graph is calculated. Then, a general method is given to obtain the transfer 
function of a fractal; it depends upon its algebraic description, the nonlinear character of the fluid and 
the basic graph, The threshold for a Bingham fluid to flow is also determined. Power-law fluids and 
Bingham fluids are then studied on a Sierpinski gasket. 

1. I N T R O D U C T I O N  

In the present paper, we shall address the problem of the flow of non-Newtonian fluids in 
fractal capillary networks. Hence, this series about fractals (Adler 1985, a, b, c, hereafter 
referred to as I, II and III) parallels our previous series about spatially periodic capillary 
networks (Adler & Brenner 1984 a, b, c, hereafter referred to as IV, V, VI). Again, we shall 
demonstrate that the methods developed in II and IV for linear flow problems can be 
successfully applied, after some substantial modifications, to nonlinear situations (see IV for 
such an extension to spatially periodic networks). As in VI, two quite different cases have 
been selected for study here: the first involves non-Newtonian (or, possibly, inertial) effects; 
the second, the derivation of threshold criteria for establishing the onset (or cessation) of 
flow through the network as a consequence of the existence of a "microscopic" nonzero yield 
stress, below which no flow occurs within an individual capillary. 

To the best of our knowledge, there is no previous contribution about nonlinear 
phenomena in fractals. All the references cited in I, II and III are exclusively concerned with 
linear phenomena (possibly time dependent). However, the chaotic behaviour of nonlinear 
dynamic systems is now often related to fractal mathematical structures (cf. for instance Hu, 
1982). 

The organization of this paper is as follows. In order to avoid the search of the relevant 
informations in I-VI, it is self-contained within reasonable limits. The physical background, 
the major definitions and the methods are given in full, while most of the technical details are 
omitted. 

In section 2, the construction and description of a fractal capillary network is recalled (cf. 
II) with the basic notations. Sections 3 and 4 are concerned with the flow of non-Newtonian 
fluids in a network. First, the nonlinear transfer functions on the basic graph are derived with 
the method used in III; some of their general properties are given. Then, in section 4, the 
transfer functions of the various generations of the fractal are derived. As an example, a 
power-law fluid is studied on a Sierpinski gasket; a fractal constant is obtained which 
depends upon the fluid index; this is the first result of this kind to our knowledge. 

Finally, section 5 deals with Bingham fluids. Addressed here during the resolution of 
such problems are the following fundamental questions: What minimal pressure difference is 
required for the flow to commence? Through which capillaries does it occur? This is 
addressed first on the basic graph and second on the fractal graph. Finally, the example of 
the Sierpinski gasket is briefly addressed. 

In this paper, some familiarity with graph theory is assumed. Only a few definitions are 
given, and the reader is referred to IV and to Biggs (1974) for further definitions and 
properties. 
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2. G E O M E T R I C A L  D E SC RI PT I O N  OF A FRACTAL CAPILLARY N E T W O R K  

The general construction of a fractal capillary network was fully detailed in II, to which 
the reader is referred. We shall restrict ourselves here to a short presentation of the 
construction process and to an introduction of the main notations. 

The basic unit of a fractal capillary network is a basic graph Fo, which is a finite graph. 
The infinite replication of F0 according to certain laws constitutes the fractal. Po may be 
considered as 

a set VPo of no vertices v~ connected by 

a set Er0  of mo edges ej. 
[1] 

A few general definitions may be given here. Two vector spaces called the edge space and 
the vector space of dimension mo and n o may be introduced; they correspond to the edge and 
vertex sets, respectively (cf. IV). Vectors are defined on these spaces in the following way; for 
instance, a flow rate vector J may be defined on the edge space; i t s j th  component is the flow 
rate on the edge j.  The edge space may be decomposed into two orthogonal subspaces, called 
the cycle and co-cycle subspaces; vectors of the edge space which belong to these subspaces 
are called cycle or co-cycle vectors. 

Two kinds of vertices are distinguished in Fo (cf. figure l a): 

n, external vertices v} ') 

_ no = n, internal vertices U~ i). 
[21 

Go is generally assumed to be connected. 
Consider a given family of transformations So (a = 1 . . . . .  M)  which act on the basic 

graph I' 0, in a manner which will be specified later. The construction of the graph I" z requires 
two steps (cf. figure I). First, the graph I"1 is defined as the juxtaposition of the graphs S~F0 

M 

I"~ = U' S ,  Fo, [31 
i-I 

V~V~ ~ ;, 
V~) ~ 

r. 
(a) (b) (c) 

Figure I. Construction of a fractal. (a) The basic graph Fo with its n, external vertices v~ ") and its 
no - n, internal vertices v} °. (b) The transformations S, (a - ! . . . . .  M) yield the graph F~ made of 
the juxtaposition of the M transformed graphs SaF o. (c) These graphs are then interconnected in a 
specified way to form the graph r~. Note the distribution between the external vertices v; (')~ of 
which become internal vertices of F~, and the external vertices @')" of ~ which become external 

vertices of F~. 
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where U' denotes the juxtaposition without any interconnections between the external 
vertices of the graphs SaF0. 

Second, the external vertices of the elementary graphs S~Fo are connected one to the 
other one in a specified way 

M 

F l ffi U S,,Fo. [4] 
i - I  

Let us assume that the interconnections are defined in such a way as to leave n, external 
vertices to the graph F~. Hence, the process can be indefinitely continued; FN may be 
expressed as: 

M 

FN = U S,,FN_I. [5] 
a - I  

The interconnections between the (M - 1)n, external vertices v~ ~')~ of F', which become 
internal vertices of F, was symbolized by the (M - 1) n, x (M - 1) n, matrix ~" defined as 
(cf. II): 

~',.j = 1 when the vertices v '(')" and vj ¢')~ are superposed 

ffi 0 otherwise. -- [6] 

The transformations So can belong to a very large class. Usually, it consists of the 
multiplication of all the lengths involved in a given geometry by a factor ~ (cf. II). In the 
examples under consideration here, S~ is the identity. 

3. THE N O N L I N E A R  T R A N S F E R  F U N C T I O N S  OF THE BASIC GRAPH 

This section is devoted to the elementary analysis of flow of nonlinear fluids on the basic 
graph Fo. The nonlinear fluids which are considered here belong to the class of the so-called 
generalized Newtonian fluids; the study of Bingham fluids is postponed to section 5. In the 
first paragraph, the general properties of the transfer functions are given. These functions 
are derived in the second paragraph, which may be skipped. 

3.1. General 

Consider the piece of porous material symbolized by the graph Fo. As in II, we are only 
interested by the relation between the flow rates going in and out of the material and the 
pressures imposed at the external vertices. 

To each external vertex of F0 can be associated a pressure and a flow rate, with the 
arbitrary convention that the flow rate is positive when it goes out of Fo (see figure 2a). 
Hence, the n, pressures and the n, flow rates can be represented by the vectors PC0') and Jto'), 
respectively, which are defined on the space of the external vertices vFCo ') (i.e. the ith 
component of PCo') is the pressure at the ith external vertex); the relation between these two 
vectors may be expressed as 

J¢o ~) ffi Ao(PCo')), [7] 

where A0 is a nonlinear vectorial function, with n, components. It is called the nonlinear 
transfer matrix of the graph Fo. 

Ao possesses general properties which are similar to the properties of its linear 
counterpart Ao which was introduced in II. First, the flow rates do not varywhen an arbitrary 
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Figure 2. Flow on the basic graph Fo. (a) The external vertices 1 to 5 are represented together with 
the corresponding pressures P~J and outgoing flow rates J~) (i - 1 . . . . .  5). (b) The graph "to on 
which the function ~ is determined. Generators whose strength is equal to the relative pressures are 

positionned between n, - 1 external vertices and for instance the last one. 

constant  K is added to the pressures; hence, 

Ao(P(o ° + K I )  = Ao(P(o*)), VP(o *), K, [8] 

n e  

where 1 denotes the vector, ~ on VF(g ). 
(1 . . . .  l ) f  

Second, the sum of the outgoing flow rates is equal to zero as a direct consequence of the 

conservation of the flow rates at each vertex of the graph F0. Thus,  

1".  Ao(P({ )) ffi O, VP(o "). [91 

The  function Ao is noninvertible,  for exact ly the same  reasons as its l inear equivalent Ao 
(cf. I I) .  Again,  this unessential  unde te rminacy  can be removed by choosing an a rb i t ra ry  

vertex,  say the last one o~ ), which is assumed to be at  a zero pressure. Moreover.  the flow rate 

J{') is given by: 0,tiw 

t i t -  I 
j ( e )  r ( e )  o,ti. [lO] - -  J O,i • 

i - I  

toe, ') ,  i ffi 1 n, 1) may  be The  remaining unknowns trt,), i 1, n, 1) and ~-oj,  , - '~ 'J  0 ,1 ,  ~ • • • , - -  " " " ' 

represented by the vectors j(o ") and p{d ), respectively. They  are  linked by the relation: 

jc~) = ao(p({)). [11] 

I t  will be assumed that  such a relation can be locally inverted, at  least for a limited range of 
values of  p~o ") and when a par t icular  solution is possibly chosen: 

p(o ° ffi a'~ l (j¢o~)), [12 ]  

where the pr ime reminds the reader  that  the " loca l"  inverse of  ao m a y  depend upon the 
par t icular  range  of  values of  p(o ') under  considerat ion and upon the par t icular  solution. 

Since the dissipation in each edge of  the basic graph  Fo is positive, the dissipation in the 
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whole structure is positive. As a consequence of our conventions, it is readily deduced that: 

. (e)~ 
p~o ' ) .  ao(Po , < 0 ifp~o ') ~ 0. [13] 

Once, ao is known, it is not difficult to obtain A0. Every component of p~0 ") is replaced by: 

p~) P~! n~'~ [14] 

The n, - 1 first components of J<0 e) are equal to the components of j~o'); r(r) is obtained O' 0,nf 

through [ 10]. 

3.2. Calculation o f  the funct ion  ao 
The nonlinear transfer function ao can be calculated in a way which is very similar to the 

one used for the analysis of nonlinear flow problems in spatially periodic capillary networks 
(of. VI). All the graph formalism which was introduced in IV, V, VI is not detailed again 
here. 

An other useful tool is the generalized inverse (Lancaster 1969) which was already used 
in VI. Denote by G any m x n matrix of rank r and let fl • • • f, be a basis for the image of G. 
Define F = [ f l . . .  f,]. Each column of G is a linear combination of the columns of F. 
Explicitly, 

:G = F .  Rt ,  [15] 

where R is an n x r matrix. 
The generalized inverse of G denoted by G t is given explicitly by: 

G t =  R -  ( R t .  R) -~ • (F + • F) - '  • F?. [161 

G t possesses the usual properties of an inverse (cf. Lancaster 1969 and VI). Morevoer, it may 
be employed to solve the standard linear equation, 

G • x = b, [171 

where b is a given vector. A solution is easily shown to be: 

xo = Gt .  b, [18] 

where b belongs to the image of G. Of course, any vector belonging to the kernel of G can be 
added to Xo. 

In order to be specific, we shall restrict ourselves to power-law fluids in a first step. These 
are inelastic fluids whose rheological properties are characterized by a single, shear 
rate-dependent scalar viscosity function (Astarita & Marucci 1974). The pressure drop 
along a given edgej  is concisely summarized by (of. VI): 

Ap(j) = - K . s ( j )  • I J(J) I"-'J(J), [19] 

where S ( j )  is the "conductance" of the edge j; it depends, inter alia, upon the geometrical 
characteristics of j .  K is the consistency of the fluid, n is the power law index. Note that it is 
necessary to keep track of the algebraic sign of J ( j )  in applying [19]. In the future, it will 
prove convenient to denote by J" the vector of the edge space EFo whose component is: 

I J ( j )  I"- ' J ( j )  

on the edge j. 
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Of course, [ 19] assumes that the pressure drops corresponding to the junctions between 
the capillaries and to the entry regions in the capillaries can be neglected; this is certainly so 
when the length of the capillaries is much larger than their diameter and when there is no 
singularity associated to the junctions. 

With these preliminaries, ao(P~o ~)) can be calculated on a modification 70 of the basic 
graph Fo (Boliobas 1979; II), which is illustrated in figure 2.b. Additional edges are added 
between the first n, - 1 external vertices of Fo and the last one. Generators, whose strength is 
equal to the relative pressures p~o ') are supposed to be located along these edges. 

This new graph, denoted by 3"0, possesses no vertices and ~ = m + ne - 1 edges (since the 
basic graph Fo had no vertices and m edges). 

The following vectors may be defined on the edge space E3"o of 3"0. Jo is the flow rate 
vector whose j th  component represents the flow rate Jo(J) along the j th  edge of 3"o. Po is the 
pressure difference vector, whose elements consist of the pressure differences existing 
between vertex pairs situated at either end of edgej .  

It is assumed that the last n, - 1 edges of 3"0 are the additional edges. Hence, the last ne - 1 

components of Jo and Po are equal to j~o ~) and p(o ~), respectively. Jo and Po may be decomposed 
into two vectors 

- (J,n,/ (p,°,/ [2ol jo po = I¢o"}' 

where Jint and Pint are the flow rate and pressure difference vectors on the m first edges of 3'0- 
The diagonal ~ x ~-condut: tance matrix M is defined by its non-zero diagonal 

elements: 

M ( j l , j 2 )  = s ( j O ~ ( j l , j 2 )  Jl <- m 

M ( j l , j 2 )  = 0 Jt > m or j2 > m. 
[21] 

Hence, the conductance of the additional edges is equal to zero. 
The pressure generator vector g is a vector defined on the edge space of 3"0 as: 

g ( j )  = 0 j <- m 
[22] 

= p~oe)q_,. -m >_ j > m 

All these notations may be used to express in a compact way the nonlinear Ohm's law on 

the graph 3'0, 

Po = K M  • jg + g. [23]  

The total pressure difference is equal to zero along any cycle of the graph. This property 
yields a second set of ~ - no + 1 equations 

C~ • Po = 0, [241 

where C is the ~ x ( ~  - no + 1) cycle matrix of the graph 3'o (cf. IV); its columns are 
independent cycles of the graph 3"0. 

Finally, the continuity equation is written for each vertex of 3"o. This yields a third set of 
(no - 1) equations: 

K t .  ]o = 0, [251 

where K is the ~ x (no - 1) co-cycle matrix of the graph 3'o (cf. IV and VI); its columns are 
independent cocycles of the graph 3'0. 
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Equations [23], [24] and [25] constitute the three basic equations of the problem. They 
will be solved by a method very similar to the one used in VI. The pressure difference vector 

Po may be eliminated in [23] by multiplying this equation by CI" to obtain 

K .  C t  • M .  jg + C t  • g = 0. [26] 

Since CI" • g obviously belongs to the image of C1", equation [26] can be solved by the use of 
the generalized inverse. Moreover, a simplification occurs in the present case, since the rank 
of C t  is equal to its number of rows. Hence, it is always possible to choose F and G defined by 
[15] as 

F = I ,R~ = Ct  [271 

from which the generalized inverse of C~" is found to be: 

( c t ) '  = c .  ( c t  • c ) - '  [281 

Equation [26] may be equivalently written as: 

where Q is given by: 

M . i g = - K - ' .  ( Q . q + . A  t ) [29a1 

Q = c • (ct" • C) - '  • c t  [29b] 

)¢ is an arbitrary vector belonging to the kernel of Ct". In other words, )¢ is a co-cycle vector. 
As such, it possesses only no - 1 independent components and may be expressed as: 

JV = K .  N [30] 

where N is a vector of the co-cycle space with n o - 1 components. 
Equation [26] can now be split into two parts. Its last n, - 1 components yield n, - 1 

relations between N and g: 

( Q .  g + K .  N ) , j = 0 ,  - ~ - n , + l < _ j < _ - ~  [31] 

The first ~ - n, + 1 components of equation [26] provide the flow rates inside the edges 

of I'o; it can be written as: 

j i . t  = - K - I M ~ / "  • ( Q  • g + K • N )  '/", [321 

where a t/" means a vector formed from the components of a raised to the power of %, with the 
prior understanding that one is to keep track of the algebraic sign. Mig~ ~/" is the ( ~  - n, + 1) x 
( ~  - n, + 1) diagonal matrix defined as: 

Mi;t '/" (Jl,J2) = s(J,) - ' /""  ~(j,,J2). [331 

Finally, the continuity equation [25] yields no - 1 conditions. Among them, n, - 1 serve 
to express the external flow rates j(o ') as a function of the m "internal" flow rates Ji,t; actually, 
these correspond to the continuity equations expressed at the n, - 1 external vertices of I'o. 
The other no - 1 - (n, - 1) conditions provide the relations necessary to determine the no - 
1 - (n, - 1) unknown components of N which remained to be calculated after the 
application of [31 ]. 
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Such a distinction was unnecessary in VI where all the edges of the local graph had a 
non-zero conductance s( j ) .  

An example will be given in section 4. 
A significant auxiliary aspect of the technique is its immediate extension to any 

nonlinear flow problem for which the pressure drop-flux relationship along an edge can be 
inverted. More precisely, in lieu of [19], one could obviously cope with the more general 
functional relationship: 

Ap = - f [J(j)] .  [34] 

In these more general circumstances, all of the formulae following [19] would continue 
to apply, provided that where appropriate, M -t ( )~/" was replaced by f - l ,  symbolically 
representing the inverse of the func t ionf  

4. NONLINEAR FLUIDS IN FRACTALS 

The theoretical developments in this section follow very closely the ones for Stokes flow 
which were developed in II. First, some basic relations are recalled; then, the iteration 
formula, which relates two successive fractals, is derived. Finally, a particular attention is 
devoted to the examples; the fractal structure is the classical Sierpinski gasket; various power 
laws are studied. 

4.1. Basic relations 

Let us denote by J~) the vector defined on the subspace VF~ ~ of the external vertices of 
Ft¢; J~) represents the n, flow rates going out of Ft¢. Similarly, the n, pressures at these 
vertices are represented by the vector P~). Paralleling [7] and [11], the following relations 
hold for these two vectors: 

J~) = AN(P~)), [35al 

or equivalently, 

j~N ") = au(p~')). [35b1 

One of the major purposes of the present paper is to calculate in a general and convenient 
form these functions AN and a~ as functions of the structure of the basic graph F o represented 
by its transfer function Ao or ao, as functions of the family of transformations S~(a = 

1 . . . . .  M) and as functions of the interconnections between the graphs S,ro(6 = 1 . . . . .  M) 
represented by the matrix ~'. Usually, iteration formulae are first obtained; 

AN = F,g(AN_0 [36a] 

aN = f,.r(aN_,), [36b1 

from which As and as  are readily deduced as functions of Ao and ao: 

N 

AN = ~'( . . . .  i~(Ao) . . . .  ) [37a1 

N 

au = f( . . . .  i(ao) . . . .  ) [37b1 
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The assemblage of graphs I'u_~ which compose the graph Fs is now algebraically 
described. F'u is defined (cf. [3]) as the juxtaposition without any interconnections of the M 
subgraphs S.I" 0. An external flow rate vector J ' ~  can be defined on the space VI"~ ) of all the 
external vertices of the graph I"u; of course, VF'~ ) is simply the union of all the external 
vertices of the transformed subgraphs S,J'u_~ (a = 1 . . . .  , M);  hence, 

M 
v r ' ~  = u s . ( v r~_ , )  [38] 

a - I  

J'~) is thus given by: 

J~,) _ 

' St J~- 

, SMJ~)-  t 

[39al 

and similarly, 

p ~  - 

SiP(e) t JtN_l 

S p(,) a N-I 

SuP~Li ) . 

[ 4 0 ]  

On the graphs I'~,, which is generally disconnected, the flow rate vector J~') may be expressed 
as" 

I Si [As_ l ($1P~)--, )1 

~,(e) . J~,') - S . [ A u _ t ( S . r # _ ,  )] 

SM[A~,-t (SOPS)-- t )] 

This expression may be condensed with the use of the vectorial function ~', 

J~') = ~'(P~')). [42] 

A word of comment is necessary here. ~" has M x n, components. Its n, components 
( -  1) n, + 1 to an,  are equal to S,,[Au_t (S,P(~_t)].  

Equation [42] may be rearranged as follows. Let us renumber the external flow rates and 

[41] 
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P~')' ~ L I -  P". [49b1 

With this formulation, [46] is automatically satisfied as a consequence of [48]. 

4.2. Derivation of  the transfer function 
As a pleasant consequence of these lengthy preliminaries, the formal solution of the 

problem is now at hand. Equation [44] may be split into two parts: 

J~,*)' = ~', (p'~')', p~) ) ,  [50a] 

J~) = ~'2(P '(')', P~)). [50b] 

The solution is obtained as follows. The ( M  - 1)n, relations [50a] furnish ( M  - 1)n,/2 
relations, from which the components of the vector P" can be deduced. Introduction of these 
values into [50b] yields the desired relations between J}~ and P~ .  

Let us now detail and discuss this solution. When [50a] is multiplied at its left by L, its 
left-hand side vanishes as a consequence of [46a]. Introduction of [49b] yields: 

L .  ~'~ (L'}" • P", P~,)) = 0. [51] 

This vectorial equality is equivalent to_(M - 1)ne/2 relations between the ( M  - 1)n,/2 
independent components of P" and the components of P~). 

p,i can be actually calculated as a-function of P~) from [51]. A formal proof of this 
property would run parallel to the proof given in II for linear flows; in other words, it is based 
on the "invertibility" of ao (cf. [11] and [12]). Moreover, the restrictions which accompany 
[ 12] imply that in general several possible solutions can be obtained in principle. 

Hence, let us choose of these possible solutions and write 

P " =  $~v(P~)). [521 

Introduction of this equality and of [49b] into [50b] yields the final result, 

J~) = ~'2[LI" • 4~2v(P~)), P~)], [531 

which is the desired relation between J~) and P~). According to the definition [35a] of As, we 
obtain: 

An = ~'2[Lt • qb~(.), .]. [54] 

Of course, As is a function of A~_~ through ~'2 and ~s. In general, it is difficult to give an 
explicit dependence of ~ upon A~_, and thus to obtain an expression such as [36a]. Hence, 
a general iteration formula such as [36] is not explicitly given here. 

4.3. Power law fluids on a Sierpinski gasket 
Let us illustrate the general formulae, and their use, by the standard example of a 

Sierpinski gasket (cf. figure 3). Again fractal relations are shown to be obtained in the limit 
of large values of N; they will be systematically calculated as a function of the fluid index 
n.  

The basic graph ro is a triangle (figure 3a); the associated graph 3'o (figure 3b), on which 
the transfer function is calculated, possesses three vertices and ~ = 5 edges. In order to avoid 
any possible confusion, the edges of 3"0 are denoted by a, b, c, d, e. A possible choice for the 
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pressures as: 

[43a] 

/P~')'I 
p~') = \p~) ]" [43b] 

The first ( M -  1)n, flow rates or pressures correspond to the ( M -  1)n, external 
vertices vl (')i or F~v which become internal vertices of F N. The last n, flow rates or pressures 
are thus relative to the n, vertices v(~.i of £~v which become the final external vertices of Fs. 

Hence, the functions ~" in [42] can be subdivided into two blocks as, 

/ 
J~) / (P~')i, P~))] 

[44] 

When the M subgraphs S,  Fu_,(a = 1 . . . . .  M)  are connected according to the law 
symbolized by ~" (cf. [16]), it implies that the flow rates are equal and opposite (recall the 
algebraic convention) and that the pressures are equal at the vertices which are connected 
one to the other one. This maybe  expressed as: 

f .  J~ , ' ) '  = -J~;)~ [45a1 

P'(')' P~')' [45b] . j t  N 

which provide 2 (M - 1)n, relations between flow rates and pressures. It was shown in II 
that the relations [45] can be replaced by the nonredundant set of (M - 1)n, relations: 

L • J~')' = 0 [46a] 

• P~')' = 0 [46b] 

where L and .£ are (M - 1)n,/2 x ( M  - 1)n, matrices obtained as follows. First, the 
matrix ~+ is defined as: 

~#+ =~q, i < j  
= O,  i > j .  [47] 

Then + 1 (for L) or - 1 (for .£) is added to the first diagonal of ~'+ each time that there is 
already 1 in the corresponding line. Then the matrices L a n d / "  are obtained by deleting the 
lines composed of 0 only. These matrices enjoy the elementary properties: 

L .  / ' , = 0 ,  L . L t = 2 I , . £ .  / ' , = 2 I .  [481 

Finally, it proved convenient to introduce new and nonredundant flow rate and pressure 
vectors j,i and P'", each of them possessing (M - 1)n,/2 independent components, and such 
that: 

J'(')' a~t J", [49a] 
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(a) 

5 68 9 

/ 

' 3 :  - l ' a  

(b) 

(c) 
Figure 3. The Sicrpinski gasket. (a) The basic graph I'o. (b) The graph ~'o; the edges arc numbered by 

the letters a, b . .  e. (c) Construction of the gasket; the first generation r j .  

cycle and cocycles matrices C and K is: 

1 0 0' 

I 0 - 1  

C =  1 1 0 

0 1 0 

t0 0 ld 

It is then straightforward to show that: 

K = 

1 1 

0 - 1  

- 1  0 

1 0 

0 - 1 ]  

[551 

4 2 2 - 2  2' 

2 5 1 - 1  - 3  

c . ( c t . c )  -~ .C '  1 = ~ 2 1 5 3 1 [56] 

- 2  - 1  3 5 - 1  

2 - 3  I - 1  5, 

The three edges, a, b and c, are supposed to have the same resistance S which is assumed 
equal to 1. Note that all quantities in this paragraph are dimensionless, pressures, flow rates. 
Hence M (cf. [21]) is deduced to be: 

1 0 0 0 0 I 

0 1 0 0 0 

M =  0 0 1 0 0 [57] 

0 0 0 0 0 

t0 0 0 0 O, 
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The pressure generator vector g is given by (cf. [22]): 

g = 

0 

0 

0 [58] 

when the origin of the pressures is located at vertex 3. 
The arbitrary vector N (of. [30]) has two components Nl and N2. An easy utilization of 

the previous formulae enables us to write [29a] as: 

M.;;- _! .  
8 

' - 2 p t  + 2p21 

- P l  - 3p2 

3pt + P2 

5pl - P2 

- P l  + 5p2 

rN l + N~ 1 

-N2 

- N ~  

Ni 

- N :  

[591 

The continuity equation [25] yields two conditions. Note that we are here in a particular 
situation since the number of vertices o-o-o~ ro is ~qual to the number n ,  = 3 of external vertices 
of 1~o. Hence, we obtain the external flow rates as functions of the internal ones (of. the 
comments after [33]), 

"7 "7 "7 

J o . d  = J o , ~  - J o . , ,  

"7 "7 "7 

Jo,, = Jo.o - Jo.b. 
[60] 

Finally, the last two equations of [59] yield two relations between N and g (cf. [31]), 

8 N t = p 2 - 5 p t ,  8 N 2 = - p t +  5pv [611 

These values can be inserted into the three first equations [59]. The flows on the internal 
edges of I" 0 are deduced to be: 

Jo,b] = P2 [621 

Of course, in such a simple situation, these relations could have been written down directly, 
but this is not always the case. Going back to the basic graph I'o, the outgoing flow rates Jr, ,/2 
and J3 may be written as: 

JI = - ( P t  - P3)  I/" - ( P 1  - P2 )  1/' ,  

J2 = (Pt - P2)  I/" - ( P 2  - Ps) l/", 

• I3  = ( / 2  - t'3) '/" + (e ,  - P3) ~/~. 

[631 

These three equations constitute the explicit expression of the transfer function Ao (cf. [7]). 
Let us now calculate the transfer function At of the graph I't which is illustrated in figure 
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3c. The external vertices of F~ are ordered as 1, 5, 9 and the internal vertices as 2, 3, 4, 6, 7 
and 8. The matrices ~'and L may be expressed as (cf. II  for more details): 

~.= 

f0 0 1 0 0 01 

0 0 0 0 1 0 

1 0 0 0 0 0 

0 0 0 0 0 1 

0 1 0 0 0 0 

~0 0 0 1 0 0~ 

L =  1 0 0 l [64] 

0 0 1 0 

The nonlinear vectorial functions ~'~ and ~'2 (cf. [44]) and obtained by writing three times 

[63] for the three basic graphs ro which compose r , .  Application of [51] yields the nonlinear 
system: 

( P l  - p2)l/,, + (P3 -- e2)  U" + (/°6 -- P2) I/" + (P5 - P2) l/" = 0, 

( P l  -- Ps) 1/" + (e2 - e3)  I/" + (/)6 - e3)  '/" + (P9 - 1)3) 1/" = 0, [651 

( e2 - 1)6) '/" + (e5 - e6) '/" + (es  - P6) '/" + (P9 - 1)6) ~/" = o, 

from which P2, P3 and P6 can be calculated as functions of P~, P5 and Pg. 

Once these intermediate pressures are known, A~ may be obtained by a straightforward 
application of [53]. 

So far, the general method was faithfully followed for illustration purposes and it is 

gratifying to check that our general formalism works properly. However, power law fluids 
possess a general feature which will greatly shorten the numerical computations; namely, the 

transfer function A0 is a homogeneous function. When all the pressures are multiplied by a 

factor c, the flow rates are multiplied by c ~/'. It is easily shown that the transfer functions 

A~ . . . . .  A~ are also homogeneous with the same exponent n. Hence, it is sufficient to 
calculate Ao • • • Arc on the unit circle in the following way. 

On Fo, let us assume that the origin of pressures is P~. Since the vertices 2 and 3 play a 

symmetric role in Fo, [63] may be written with a unique functionfo of the two arguments P2 

and Ps: 

J.  = - f o ( P 2 ,  P3) - fo(P3, P2), 

4 = fo(P2, P3), 

,Is = fo(P3, P2). 

[66] 

fo is easily derived from a comparison between [63] and [66]. 

Sincefo is homogeneous, it suffices to know it on the unit circle, i.e. for P2 and Ps such 
that: 

(p2) 2 4- (p3) 2 = 1. [67] 

In general, P2 and Ps may be expressed as: 

P2 = ~. COS 0, P3 = X sin 0 [68] 

whence 

fo (P2, P3) = >O/n • fo(cos O, sin 0) 

= X ~/n • f o (O) .  
[69] 
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In order to keep simple notations,fo denotes two different functions in [69]. 
This is easily generalized for any generation N. When fu  is known,fu÷t is calculated as 

follows. P2, P3 and P6 are calculated as functions of p5 and P9 from the system deduced from 
[65l: 

f v ( P 2 ,  P3) + f u ( P 2  - Ps, P6 - Ps) = 0, 

f ly(P3,  P2) + f l y ( P 3  - P9, P6 -- Pg) = 0, 

f u ( P 6  -- Ps, P2 -- PS) + f v ( P 6  -- P9, P3 - P g )  = 0. 

[70] 

P5 and P9 are assumed to belong to the unit circle and to correspond to an angle O. The 
functionf~+~ (8) is then expressed as: 

s5 = f~,+~ (o) 

= - f l v ( P 4  - Ps, P6 - Ps) - f N ( P 6  - Ps, P4 - Ps) .  
[711 

These calculations are best done on a computer; the numerical calculation can proceed as 
follows, f~  is assumed to be known for a certain number of values of the parameter 0. An 
IMSL subroutine is used to interpolate when necessary between these values with a cubic 
spline. Then for a given value of 0, i.e. of P5 and P9, the nonlinear system [70] is solved by 
iteration, f s÷  ~ (O) is then obtained by applications of [71 ]. 

Finally, let us present and briefly discuss the results. Some details are first exposed for 
the particular case of a fluid index equ~tl to 0.5f0(O) is represented in figure 4. The positive 
branch of f N(0) is shown in figure 5 for various values of N. As expected from our previous 
results on linear fluids (cf. II), the transfer function f ~ ( O )  obeys very rapidly the fractal 
relation: 

f u ( O )  = K ( n ) f l v _ l ( O )  for Nlarge,  [72] 

where K ( n )  is a constant which only depends upon the fluid index n. Hence, in the 
semilogarithmic representation of figure 5, the various functions are deduced one from the 
other one by translations. 

The function K ( n )  was then systematically determined. Results are displayed in figure 6. 
For n = 1, i.e. for a Newtonian fluid, the classical constant 3/5 is again obtained (cf. II) and 
this serves as a useful check. When n is small, the fluid is shear-thinning, and K ( n )  tends 
toward 0. When n is large, the fluid is shear-thickening and K ( n )  tends toward 1. 

So far we have not been able to derive the constant K ( n )  on simple grounds, mainly 
because the star-triangle transformation is not valid anymore here. 

5. BINGHAM FLUIDS 

This section is devoted to the study of Bingham fluids on fractals; it is interesting to 
determine the minimal pressure difference required to initiate flow between two external 
vertices of the fractals. First, a general method is presented in order to determine it in a 
systematic way; some basic features of Bingham fluids are recalled. Finally, the Sierpinski 
gasket is briefly analysed. 

Oldroyd's commonly accepted multidimensional generalization of Bingham's original 
one-dimension equation is (Bird et  al.  1960; Fredrickson 1960): 

1 
S = 0 for~ • T :T  < To 2 

+ To 
T =  2[#® (2S..--~),/2] • S 

1 
f o r -  • T :T  > To 2, 

2 

[731 
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i _0 

21 
Figure 4. The functionfo(0) for the basic graph £o- Value of n: 0.5. 

where S is the rate-of-strain tensor, T the stress tensor, To the yield stress, and #® a 
phenomenological constant representing the Newtonian viscosity prevailing at infinite strain 
rate. 

Equation [73] will not be explicitly used here, except with regard to one-dimensional 
applications involving flow irreircular capillaries. In this case, the flow initiation condition is 
(Fredrickson 1964), 

2To 

rlVpl 
- -  < 1, [74] 

1 

10" 

10 -2 . 

10"" 

10 -4. 

w/s ' ' + r  ' ' 0  

Figure 5. The positive branch of f N(0) for the fractal graphs FN. Value of n: 0.5. Values of N are: 
O(a), l (b) ,  2(c), 3(d), 4(e), 5 ( f ) ,  6(g). 
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k(n) 
I 

O.S 

0 1 2 3 n 

Figure 6. The fractal constant K(n) for a Sierpinski gasket as a function of the fluid index n. 

with the scalar [ Vp I the prescribed pressure gradient in the capillary of radius r. Similar 
criteria, but with different numerical factors, prevail for noncircular capillaries. 

Hence, according to [74], a positive magnitude can be assigned to each of the basic graph 
I'o. This number represents the minimum value of the pressure differential along an edge j 
that will still permit the fluid to flow locally. For instance, for a circular capillary of length 
L(j) and radius r(j) this number would possess the magnitude: 

2To T(j) = - - .  L(j). [751 :(j) 

Again, this amounts to assume that the phenomena at the capillary junctions can be 
neglected. This is a safe assumption in the same conditions as for the power-law fluids. 

Let us consider two arbitrary external vertices io and i~ of F0. The threshold To(io, i'o) can 
be calculated; it corresponds to the shortest route between io and i~ when each edge is given 
the "length" T(j). It may be expressed as: 

min {,r.  am ly  e,woon,o / [761 

Obviously, flow is initiated between io and i~ when 

Ip(io) - P(i[)  I >- To(io, i[). [77] 

Moreover, it occurs along the walk(s) which correspond(s) to the minimum value of the 
summation in [76]. 

When the basic graphs ro are assembled in order to form the fractal FI, the threshold 
T, (it, i'0 corresponding to the shortest route between the two external vertices it and i't of r t  
may be expressed as: 

T~(it, i't)- m i n { ~  w To(io,,ioo); W:familyofthewalksbetweenilandi'~}. [78] 

where io, and ioo are external vertices of the basic graph Fo. 
This formula may be easily generalized to the fractal I'~. 

Ttc(ir¢,i'~)-min{~ T~_t(it~_l.,,i~_t~); W:familyofthewalksbetweenit~andi'~}. [79] 

Hence, the search on the shortest route on the fractal is facilitated by the fact that the 
route has been minimized on each subgraph I'~,_t, which forms I'N. 
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1 2 
Figure 7. Bingham fluid in a Sierpinski gasket. When a pressure drop is imposed between 1 and 2, 
the flow starts flowing along the side (1, 2) as indicated by the broken line. When ] P~ - P2 ] is further 
increased, new flow routes are simultaneously created, as indicated by the solid thick lines. The 

description of further steps would require the detailed knowledge of fluid properties. 

Note that a very different problem occurs when fluid flows between three or more 
vertices; in this case, there may be interaction between the various flow paths. This possible 
interaction becomes more-and more complicated when the fractal gets more and more 
involved. 

The Sierpinski gasket is considered in order to illustrate the previous developments. It is 
shown in figure 7. Obviously, when all the edges of the basic graph F0 are assigned the same 
threshold, the shortest route between two vertices of the gasket is the side of the triangle. 

One could easily go a little bit further and show how the flow progressively invades the 
inner structures of the graph. The second step is illustrated in figure 7. The determination of 
the further steps requires the knowledge of ~t® and To (cf. [73]). 
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